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ABSTRACT:  To build a neural network the main point to be considered is how to select the model. Various 
approaches like Constructive Networks, Pruning or Destructive Networks, Hybrid Networks etc. can be used 
for building a neural network. In this paper constructive approach is considered for building the network. The 
proposed algorithm Extended Bipolar Sigmoid Algorithm (EBSA) based on constructive type of network built 
in cascaded style. It constructs a minimal neural network dynamically starting with one hidden node and one 
hidden layer, and new hidden layer with one hidden node is added when the network is not able to converge 
properly. When there is no significant reduction in error after some cycles the residual error is required to be 
reduced by adding a candidate node and analyzing the effect on mean square error. It is tested on ten real 
time regression problems. From the results it can be seen that it has better generalization performance and 
fault tolerance ability. 

Keywords: Constructive Networks, Pruning or Destructive Networks, Hybrid Networks, Extended Bipolar Sigmoid 
Algorithm, Hidden Nodes and Candidate Nodes. 

Abbreviations: EBSA, Extended Bipolar Sigmoid Algorithm; SC, Standard Cascade; MSE, Mean Square Error; Std. 
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I. INTRODUCTION 

A good network topology is required for achieving good 
performance of an artificial neural network. Artificial 
neural networks mapping ability is always dependent on 
the size and structure of the network. A large neural 
network with many hidden layers and hidden nodes may 
result in poor generalization performance. A small 
neural network built with few hidden nodes and few 
hidden layers may not be able to solve complex 
problems. It is difficult to select an optimal neural 
network topology. It is usually decided using trial and 
error method. 
An artificial neural network is of layered type namely 
input layer, hidden layer and output layer. There can be 
one or more hidden layers, only one input layer and one 
output layer. Each layer receives its input from layer 
pervious to it and feeds the output to the layer next to it. 
This is a feed forward network. It can be single layered 
(one input layer and one output layer) or multilayered 
(one input layer, one output layer and one or more 
hidden layer). The output of hidden node is sum of 
weighted values of input on which activation function is 
applied. This output is applied to next layer till following 
the same procedure the last layer output layer is 
reached. Mostly Backpropogation algorithm is used for 
learning in theses neural networks. Only problem with 
this algorithm is the convergence rate is very poor [1]. 
The main problem for neural network building is 
selection of model (complexity). There are various 
approaches for altering the architecture of neural 
network namely constructive network, pruning or 
destructive network, hybrid (constructive-pruning) 
network etc. 

II. APPROACHES FOR BUILDING NEURAL 
NETWORK 

Constructive Network begins with network of small size 
and then it grows according to the problem to be solved. 
There is no need to decide the size of the network 
initially. This is the main advantage of this method. 
These are very efficient for hardware implementation as 
they are small in size [2]. 
Constructive networks are built by adding new features 
like hidden nodes, hidden layers and connections in turn 
changing the network topology. These are incremental 
networks which change the topology during the process 
of learning. 
Constructive Algorithms can implement input output 
mapping of any problem provided with sufficient hidden 
nodes. The performance of the algorithm depends on 
size of network, technique of weight initialization, 
activation function used, number of hidden nodes, 
connections, number of layers and algorithm used for 
learning. The network can built using a number of input 
nodes and a number of output nodes which are decided 
by the problem in hand. The number of hidden nodes, 
layers and connections can be altered using various 
learning algorithms. While training the network the error 
is reduced using gradient descent algorithm like back 
propagation, quickprop etc. There are various activation 
functions like tanh function, Gaussian function, 
symmetric sigmoid function, asymmetric sigmoid 
function, radial function etc. which can be used in these 
networks [3]. 
Constructive networks can be expanded with layers and 
hidden nodes. Various methods can be used to expand 
the network namely Inverted Pyramid Construction in 
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which new growing hidden nodes have connections with 
all previous hidden nodes, Tower Network Construction, 
Tiling Network, Upstart Neural network, Resource 
Allocation Neural Network,  Cascade Correlation Neural 
Network etc.   
These networks have very fast ability of learning, 
requires very less weights to achieve the same 
accuracy and the number hidden nodes are 
automatically adjusted depending on the complexity of 
the problem.  
Destructive Network or Pruning Network begins with 
large network. During training the unimportant hidden 
nodes are removed that are participating less. This is 
known as Pruning the Network. The network learns 
quickly as the size of network is very large. These 
networks avoid the over fitting problem due to large size 
network. The hidden nodes whose magnitude is small, 
weights of hidden node is insensitive are pruned from 
the network. Also a penalty is added to energy term for 
decay of weights of hidden nodes so that their 
participation is least [4].  
Hybrid Network is combination of both the constructive 
and destructive network. In this the neural network is 
first built using constructive approach in which hidden 
nodes are added one by one to this minimal size while 
training it. When the network becomes considerably 
very large due no proper stoppage condition, destructive 
approach is used.  This approach removes the hidden 
nodes which are participating less in improving the 
performance and hence are irrelevant for the network 
[5]. 

III. CONSTRUCTIVE NETWORK BUILDING 
APPROACHES 

In this paper constructive approach of building the 
network will be used. Various constructive algorithms 
are studied before constructing the new algorithm 
EBSA.  
Cascade Correlation Algorithm [6] is mostly preferred as 
feed forward method over other algorithms. CA changes 
the architecture of the neural network while training. It 
starts with one layer with input and output nodes fully 
connected. It installs hidden nodes which are selected 
from a pool of nodes known as candidate nodes. 
Candidate nodes which have highest correlation are 
selected for installation in the network. These are 
connected to earlier installed hidden nodes and input 
nodes. Weights of installed hidden node are frozen and 
training of output nodes is performed. New hidden node 
is added and output nodes are retrained till the 
maximum hidden nodes are being added. Training is 
continued till not much improvement further.  
Dynamic Learning Algorithm [7] uses methodologies like 
Cascade Correlation and pruning algorithm for 
producing a compact neural network.  
An extension to Cascade Correlation Training [8] is 
based on some variations in original cascade algorithm. 
It focuses on training candidate nodes with different 
patience parameter. In this algorithm firstly each 
candidate node has a patience parameter and solves 
the problem of this node running out of patience. 
Secondly, there are subgroups of candidate node 
having same features. This group is trained in blocks. 
The nodes in candidate can be divided into two parts 
based on activation function (one part with Gaussian 

function and second part with sigmoid function). The 
candidate pool will be trained with different patience 
value in two groups.  
A New Learning Algorithm for Feed Forward Neural 
Networks [9] uses incremental training method for 
training patterns which are learned one by one. It starts 
with one training pattern and one hidden node in hidden 
layer. It uses weight scaling techniques for escaping 
from the problem of local minima. After various attempts 
of controlling local minima a new hidden layer is added 
to the network. An optimization method is used for 
reaching the error tolerance level. It creates a minimal 
network and after adding hidden layer, some or no 
training is required for bringing down the error.  
Cascade Error Projection [10] is a method based on 
cascade correlation which uses single layer perception 
followed by calculation for next layer. It is a reliable and 
fast learning method in hardware. It is feasible for 
hardware and software based methods. It can be 
started with weight zero instead of assigning random 
values. There is no pool of candidate nodes. Instead, 
only one node is added at a time to the hidden layer. 
Due to this the hardware is very simple. 
Recurrent Cascade Correlation Architecture [11] is a 
recurrent form of cascade architecture. In this new 
nodes having recurrent connections are being added to 
the network one by one when required while training. It 
learns from examples while mapping inputs into outputs 
desired by the problem.  
Dynamic Node Creation in Backpropagation Networks 
[12] tries to solve issues like training of large neural 
networks and testing of neural networks having different 
number of nodes in hidden layer. In this hidden nodes 
are added in sequential manner and training is done 
using backpropogation algorithm to achieve the required 
accuracy. In this the hidden node is connected to all the 
hidden nodes of the previous layer and it is also 
connected to all the next layers. Minimal network is 
constructed using this method.    

IV. EXTENDED BIPOLAR SIGMOID ALGORITHM 
(EBSA) 

Extended Bipolar Sigmoid Algorithm (EBSA) is an 
incremental algorithm based on cascaded type learning 
network. It is starts with a simple network and continues 
with addition of nodes and connections between nodes 
in order to reduce the error. The network topology and 
calculation of connection weighs are done using a 
learning algorithm like quickprop. Input nodes receive 
input signal and output nodes give results to the 
corresponding input signals. Connections are links 
between different nodes. 

 

Fig 1. Extended Bipolar Sigmoid Neural Network. 
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It constructs a neural network dynamically. The input 
nodes of input layer are fully connected to hidden nodes 
in hidden layers which are connected to output nodes in 
output layer. The bias input is permanently set to 1.In 
this first initialization of network is done, then normal 
network with no hidden nodes is trained, then candidate 
nodes are trained with new activation function, then 
selected node is added to network.   
The idea is develop an optimal neural network which 
generalizes well. This algorithm is built after studying 
the past methodologies which helps in selection of best 
techniques for building the network. It has ability to 
converge at fast speed as compared to other non 
incremental algorithms. In this training is carried out and 
less weight adjustments are made at each training step. 
EBSA is explained as follows 
Initialization Phase: This is the first phase in which there 
are some input nodes, no hidden node and one output 
node. Then initialization of weights is done and 
parameters of training are fixed. The input nodes are 
connected to output nodes. Bias input is set to 1. The 
training is done using quickprop algorithm.   
Training Phase: In this phase, calculations of the 
weights are being carried out using learning algorithm. 
Then all weights are updated that satisfy the given 
condition. If the maximum size network is built, training 
is stopped. If there is significant improvement after a 
given number of cycles, then go to Training step 
(previous step) otherwise go to Candidate training step 
(next step). 
Candidate Training Phase: In this phase a pool of 
candidate hidden nodes is created. Every candidate 
node has different initial weight, has temporary 
connection to input node and to a virtual output node.   
Extended Bipolar Sigmoid Activation function is used at 
the hidden layer. It is given by the equation 

���� =  �� 	

�� 	�
  − �                                                        (1) 

where s is ½. It is trained in order to reduce the 
corresponding output error for a number of cycles. The 
best candidate is considered as hidden node to be 
added to the network. All the temporary hidden nodes 
and their weights are removed. The selected new node 
is added and the training of weights is done in order to 
minimize the error. Then again train the network with 
training phase. 

 

Fig. 2. Extended Bipolar Sigmoid Neural Network. 

The features are learned incrementally which are 
required for training the network as it progresses. The 
main aim is to build neural network with minimal hidden 
nodes.  

The stoppage condition in this algorithm is the maximum 
hidden nodes that can be added to the neural network. 

V. RESULTS OF SIMULATION 

This section presents the comparison of proposed 
algorithm EBSA with the Standard Cascade (SC) [13]. 
Some regression problems of real time and different 
dimensions are being worked out to check how much 
effective is the new algorithm. Neural networks 
performance is measured in terms of mean square error 
for all the following problems. 

A. 1 Dimensional Regression Function 

���� = 0.2 �1 + 1
10 �� − 7��� cos�2�� + 0.5 ����sin �2�

− 0.1"� 
                  (2) 

This regression function is very complicated. 1200 
randomly distributed samples between 0 and 1 are 
selected for training the network. 100 exemplars are 
used for training, 100 for validation and 1000 are used 
for testing. 

Table 1: One dimensional regression function 
results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46905 0.44188 5 1 

Max 0.47891 0.47834 10 10 

Mean 0.47402 0.4674 8.6 7.4 

Std. dv. 0.003687 0.010743 1.8974 3.2042 

From the results it is clear that EBSA performs better 
and uses than hidden nodes as compared to standard 
cascade.  

B. 1 Regression Function 

� =  �
���#.$�%�� +  �

�&�#.'�%�#.#( − 6                                                         (3) 

This one dimensional regression function uses twelve 
hundred randomly distributed samples between -0.5 to 
1.5. One hundred samples are taken for training, 
another one hundred for validation and one thousand for 
testing. 

Table 2: 1D regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46932 0.43843 4 2 

Max 0.47953 0.47715 10 10 

Mean 0.47352 0.45966 9 6.9 

Std. dv. 0.003273 0.012634 1.8257 2.8067 

From the results it can be noted that EBSA performs 
better than standard cascade and uses less hidden 
nodes. 

C. 2 Dimensional Function 

� = sin   * 2"+��� + ��� ,                                             (4) 

This a two dimensional regression function in which one 
thousand four hundred randomly distributed exemplars 
in range of -1 and 1 are selected. Two hundred 
exemplars are used for training, another two hundred 
exemplars are used for validation and one thousand 
exemplars are used for testing. 
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Table 3: 2 dimensional regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.47192 0.44909 5 1 

Max 0.47816 0.47892 10 10 

Mean 0.475 0.4661 8.5 6.6 

Std. dv. 0.002226 0.011237 1.4337 2.8752 

From the results in the above table it can be seen that 
EBSA is better in performance when compared to 
standard cascade. It requires less hidden nodes than 
standard cascade. 

D. 2 Dimensional Function 

� =  ���- ./0�1�%��                                            (5) 
This is a two dimensional regression function which 
uses one thousand four hundred randomly distributed 
samples in range of -1 and 1. Two hundred samples are 
used for training, another two hundred samples are 
used for validation and one thousand samples are used 
for testing. 

Table 4: 2D regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46886 0.4481 1 3 

Max 0.47985 0.47757 10 10 

Mean 0.47419 0.46185 7.6 7.4 

Std. dv. 0.00382 0.011787 2.9136 2.7162 

From the results in the above table it can be analyzed 
that EBSA performs better than standard cascade. 
EBSA uses slightly less hidden nodes as compared to 
standard cascade 

E.3 Dimensional Function 
Three Dimensional Simple Analytical Function (SAF) is 
expressed as 

u = �
��	�3
-4�
%�5.6�%47 89:�;
7�                             (6) 

v is uniform between 0 and 1.Three hundred samples 
selected randomly are generated for training, Three 
hundred samples are generated for verification of 
network generalization and One Thousand samples are 
generated for testing the network. Sixteen hundred 
uniformly distributed samples are generated randomly 
between 0 and 1. Ten hidden nodes are added to the 
maximum and each hidden node is trained maximum till 
800 epochs. 

Table 5:  3D regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46661 0.43843 4 2 

Max 0.47953 0.47757 10 10 

Mean 0.47261 0.45843 9.1 6.6 

Std. dv. 0.0038142 0.013707 1.8529 2.7968 

From results above in the table it can be seen EBSA 
performs better and needs less hidden nodes when 
compared with standard cascade. 

F. Boston Housing Problem 
The Boston house price prediction problem is a real 
world problem. It is available in the UCI Machine 
Learning Repository. The data set used is sampled 
randomly in which all inputs and outputs are in the 
range of -1 and 1. 

It has 506 information entries having 13 attributes of 
houses in the suburbs of Boston. The motive is to 
predict the prices of these houses located in Boston 
depending on the attributes like number of rooms, crime 
rate per capita of town, location of house, property tax 
etc. [14]. 

Table 6: Boston Housing problem results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46905 0.44186 5 1 

Max 0.47891 0.47834 10 10 

Mean 0.47402 0.46616 8.6 7.5 

Std. dv. 0.0037773 0.013933 1.8974 3.2745 

From the results EBSA is slightly better in comparison to 
standard cascade and also needs less hidden nodes. 

G. Auto MPG Problem 
It is about consumption of fuel miles per gallon for cars 
in the city for different types of cars. It has 8 attributes 
out of which five are continuous and three are discrete. 
It has attributes like car name, origin, model year, 
displacement, horsepower etc. It predicts automobiles 
fuel efficiency. It is available in UCI Machine Learning 
Repository [15]. 

Table 7:  Auto MPG problem results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46254 0.44836 6 3 

Max 0.47931 0.479 10 10 

Mean 0.47451 0.47303 8.8 7.7 

Std.dv. 0.004940 0.009583 1.5492 2.4967 

From the above results it can be seen that EBSA 
performs slightly better than standard cascade. It also 
uses less number of hidden nodes. 

H.4 Dimensional Function 

� =  ����-./0 �1�<�� + sin ����$�                          (7) 
This four dimensional regression additive function uses 
one thousand eight hundred randomly distributed 
samples in range of -0.25 and 0.25. Four hundred 
samples are used for training, another four hundred 
samples are used for validation and one thousand 
samples are used for testing. 

Table 8: 4D regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46905 0.44188 5 1 

Max 0.47891 0.47834 10 10 

Mean 0.47402 0.4674 8.6 7.4 

Std. dv. 0.003682 0.010743 1.8974 3.2042 

From the above results it can be seen EBSA performs 
better with less number of hidden nodes. 

I. 4 Dimensional Function 
� = ��� + 10���� + 5��$ − �(�� + ��� − 2�$�(

+ 10��� − �(�( 
                  (8) 
In this four dimensional function one thousand eight 
hundred randomly distributed samples are selected. 
Four hundred are used for training, another four 
hundred for validation and one thousand for testing. 
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Table 9: 4D regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46932 0.43843 4 2 

Max 0.47953 0.47715 10 10 

Mean 0.47352 0.45966 9 6.9 

Std. dv. 0.003273 0.012634 1.8257 2.8067 

From the above table it can be seen that EBSA 
performs better than standard cascade and uses less 
number of hidden nodes. 

J. 5 Dimensional Function 
� = 0.0647 �12 + 3�� − 3.5�� � + 7.2�$$��1 + ?@�4"�(��1

+ 0.8�BC3"�D � 
                  (9) 
Two thousand random samples are generated. Five 
hundred samples are used for training, five hundred for 
validation and another one thousand for testing. 

Table 10: 5D regression function results. 

 
MSE Hidden Nodes 

SC EBSA SC EBSA 

Min 0.46905 0.44188 5 1 

Max 0.47891 0.47824 10 10 

Mean 0.47402 0.4674 8.6 7.4 

Std. dv. 0.003682 0.010743 1.8974 3.2042 

From the above results it can be seen that EBSA 
performs slightly better than standard cascade. It also 
needs slightly less number of hidden nodes.  

VI. CONCLUSION 

The extension to Bipolar Sigmoid Algorithm presented 
as EBSA explained in the above sections is very 
effective in aiding neural network training. From the 
experiments it is clear that the use of improved 
activation function improves performance of neural 
network. It minimized the number of hidden nodes with 
no compromise in network generalization performance. 
It is an easy and computationally useful method for 
building a small size network.  

VII. FUTURE SCOPE 

In future EBSA can be trained using learning algorithms 
other than commonly used quickprop algorithm. 
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